- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Juntan (2)
-
Xu, Haixuan (2)
-
An, Ke (1)
-
Bommidi, Jaswanth (1)
-
Chou, Yi‐Chia (1)
-
Fensin, Saryu J (1)
-
Gray, George T (1)
-
Hayakawa, Sho (1)
-
Huang, Aomin (1)
-
Kang, Leeseung (1)
-
Kim, Dong‐Joo (1)
-
Lee, Chanho (1)
-
Li, Nan (1)
-
Liaw, Peter K (1)
-
Meyers, Marc A (1)
-
Neelakandan, Deva Prasaad (1)
-
Prorok, Barton C (1)
-
Song, Gian (1)
-
Wu, Chia‐Yi (1)
-
Xie, Dongyue (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lee, Chanho; Neelakandan, Deva Prasaad; Xie, Dongyue; Li, Juntan; Wu, Chia‐Yi; Huang, Aomin; Kang, Leeseung; Xu, Shuozhi; Prorok, Barton C; Kim, Dong‐Joo; et al (, Advanced Science)Abstract The mechanical behavior and microstructural evolution of a BCC‐phase NbTaTiV refractory multi‐principal element alloy (RMPEA) is studied over a wide range of strain rates (10−3to 103s−1) and temperatures (room temperature to 850 °C). The mechanical property of present RMPEA shows less strain‐rate dependence and strong resistance to softening at high temperatures. Under high strain‐rate loading, the formation of thin type‐I twins is observed, which could lead to an increase in strain‐hardening rates. However, this hardening mechanism competes with adiabatic heating effects, resulting in the deterrence of strain‐hardening behaviors. In contrast, substantial strain‐hardening occurs at cryogenic temperatures due to the formation of twins, which act as stronger barriers to dislocation motion and interact with each other. To further understand the different strain‐hardening behaviors, density functional theory (DFT) calculations predict relatively low stacking fault energies and high twinning stress for the NbTaTiV RMPEA.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
